ECE444: Software Engineering

Design Patterns 2 (SOLID)

Shurui Zhou

2 The Edward S. Rogers Sr. Department

@ of Electrical & Computer Engineering
(BS) B8]

%2 UNIVERSITY OF TORONTO

AAAAA

* About posting questions on Piazza

* About Milestone 3 deadline
* Group&Individual report (Monday) 10/5 11:59pm EST

* Peer review (Thursday) 10/8 11:59pm EST
 About Milestone 5 deadline 11/18 11:59 EST

* About workload — incoming survey

The Edward S. Rog SD}
‘ofElect cal & Cor } t Eng

IIU
% UNTYERSITY G TORONTO

Learning goals

e Understand SOLID principle

e Edward S. Rogers Sr. Department

Electrical & Computer Engineering

9% UNIVERSITY OF TORONTO

UML Relationships

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

 XOAvAAY

Association

Inheritance

Realization /
Implementation

Dependency
Aggregation

Composition

OO Design Principles

CARL QUIT. HES THE
ONLY ONE WHO KNOWS
HOW TO PROGRAM THE

LEGACY SYSTEM.

IT CANT BE THAT
HARD. GO FIGURE IT

scottadams@aol.com

www.dilbert.com

’fﬁé The Edward S. Rogers Sr. Department

@ | of Electrical & Computer Engineering

%Z?:a UNIVERSITY OF TORONTO

Copyrighted Material

Design Patterns

Elements of Reusable
Object-Oriented Software

<4
‘P

 Elements of Reusable
Object-Oriented
Software

* 23 OO0 patterns

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

>
N/
4
W
™
O
7
=
e
m
W
m
<
e
)
7~~~
N
M
A
w
~
N
<
5
=
™~
~
=~
<
S
T
—~
=
2
~
W
m
~
rm
w

Cover ant© 1998 M C. Escher / Condon Ant - Baam - Holland. Al rights reserved.

Foreword by Grady Booch

Copyrighted Material

"i‘i{'é The Edward S. Rogers Sr. Deparrment
& | lectrical & Computer Engineering

%}% UNIVERSITY OF TORONTO

Why Patterns?

* They offer solutions for specific problems

* They are easily applicable because the purpose and application are
consistently described

* They make work more efficient
* They can be adapted to specific contexts

* They make communication between developers easier
* Goal: Understandable, reusable, testable, maintainable and flexible

g8 The Edward S. Rogers Sr. D}

;;: ‘ ectrical & Cor 1, r Engin

w $ UNIVERSITY OF TORONTO

OO Design Principles

Open/closed principle

Liskov substitution principle

Single responsibility
principle

Interface segregation

principle
| JT N Dependency inversion
Ly principle

Edward S. Rogers Sr. D} artment
lectrical & Cor } uter Engineering

. 4 UNIVERSITY OF TORONTO

Single Responsibility Principle

Guildelines to partition your logic into classes

Single Responsibility Principle

A class should have one, and only one, reason to change.
Just because you can, doesn’t mean you should

Benefits:
* Frequency and Effects of Changes AHE'??Q,“SSQ‘S'EM
e Easier to Understand - |

Q: What is the responsibility of your ".

class/component/microservice?

’fﬁé The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

g:?:g UNIVERSITY OF TORONTO

Single Responsibility Principle l/&ﬂl

A class should have one, and only one, reason to change.

Coglelz)li:i[tlfynal Rectangle Graphical
+ draw() L
Application —> «— Application
+area():double

GUI <

{:’%? The Edward S. Rogers Sr. Department

‘ of Electrical & Computer Engineering

%’a‘“ UNIVERSITY OF TORON"}O

Single Responsibility Principle l/ﬂ

Computational
Geometry
Application

Graphical
Application

V V V

Geometric = Rectangle
Rectangle = GUI

+area():double +draw()

{15’"% The Edward S. Rogers Sr. Deparrment
‘ of Electrical & Computer Engineering

‘%g; UNIVERSITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

= u Dependency inversion
‘ principle

Open-Closed Principle (OCP)

e Software entities should be open for extension, but closed for modification.

DID YOU KNOW THESE |T GUYS COPIED
MY IDEA OF EXTENSIBILITY [

’
‘.
/)N
-
-

"i‘i{;‘ﬁ The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

%?:@ UNIVERSITY OF TORONTO

Open-Closed Principle

* Implementation:
* inheritance
e composition

* Benefits:
* extend a component’s logic without breaking backward
compatibility
* test different component implementations (that have the
same logic) against each other.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
% UNIVERSITY e TORONTO

https://stackify.com/oop-concept-inheritance/
https://stackify.com/oop-concepts-composition/

Open-Closed Principle (Example: Client&Server)

Client Server
«class» | _depends-on «class»
+saveSomeData(data:String) +post(url:String, data:String)

The class is:

- not open for extension, since we always use a concrete Server instance
- not closed for modification, because if we wish to change to another
type of server, we must change the source code.

dward S. Rogers Sr. Depar
ctrical & Cor 1, r Engin

UNIVE RSITY OF TORONTO

Open-Closed Principle (Example: Client&Server)

Client AbstractServer
«class» oo > «abstract class»
+saveSomeData(data:String)|| * | |[+post{url:String, data:String)

[Fxtc nds

Server
«class»

+post(url:String, data:String)

Edward S. Rogers Sr. Department
| ectrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Open-Closed Principle (Example: Order&Shipping)

Order < = Shipping

public double getShippingCost(Order order, String shipping) {
if ("ground".equals(shipping)) {

ca [, CU |, 1 i H 1@ TOTa \, COS } For 'I,_i FOuUn(L[‘|,Jl 10
} else if ("air".equals(shipping)) {
// calculate the total cost for Air shipping

}
}

Open-Closed Principle (Example: Order&Shipping)

Order

V

Shipping

Order

A\

Extends

AirShipping

.| <<interface>>
- Shipping
GroundShipping AirShipping

Thoughts? Critigues on OCP

* Adding un-needed flexibility to code (to make it open for extension)
breeds complexity and carrying cost.

* It requires imagining all sorts of use-cases that don’t exist in order to
make it ultimately flexible.

* Principle !=you should always do this

’fi}i The Edward S. Rogers Sr. Department
i | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

J

Liskov substitution principle

Interface segregation
principle

N N Dependency inversion
v principle

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle]

Interface segregation
principle

Dependency inversion
principle

Duck Tesk

If it looks like a duck and quacks like a duck but it
needs batteries,
you probably have the wrong abstraction.

Liskov Substitution Principle (LSP)

* The object of a derived class should be able to replace
an object of the base class without bringing any errors
in the system or modifying the behavior of the base
class.

Benefit of LSP

* Code that adheres to LSP is loosely dependent to each other and
encourages code reusability.

Disadvantages to violating the LSP

* Code that does not adhere to the LSP is tightly coupled and creates
unnecessary entanglements.

* E.g. when a subclass can not substitue its parent class there would
have to be multiple conditional statements to determine the class or
type to handle certain cases differently.

?fi},? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

Violating the Liskov Substitution Principle

class Rectangle ({
public void setWidth (int width) {

} this.width = width; IS-A relationship

public void setHeight (int height) {
this.height = height;

}

public void area () {return height * width;}

} Implementing square as a subclass of Rectangle:
Rectangle
class Square extends Rectangle { ——)
public void setWidth (int width) ({ +eetWidiiiint width)
super.setWidth (width) ; +setHeight(int height)
super.setHeight (width) ; +areaf):int

} ZS
public void setHeight (int height) {
super.setWidth (height) ;

super.setHeight (height) ; Square

: +setWidth(int width)
he Edward S. Rogers Sr. Department +SetHe|g ht(lnt helg ht)

Electrical & Computer Engineering

NIVERSITY OF TORONTO

Violating the Liskov Substitution Principle

void clientMethod (Rectangle rec)
rec.setWidth (5) ;
rec.setHeight (4) ;
assert (rec.area () == 20);

}

¢‘45
<
¢ <

af_-i The Edward S. Rogers Sr. D}
‘ofEl cal & Cor 1. r Eng

um

HU
qg,"? 19) VERSITY OF TORONTO

{

Rectangle

+setWidth(int width)
+setHeight(int height)
+area():int

R e

Square

+setWidth(int width)
+setHeight(int height)

Liskov Substitution Principle (LSP)

* A LSP compliant solution |
«interface»
* Introduce the interface Shape Shape
+area():int

| I
| I
| |

Square Rectangle
+setSize(int size) +setWidth(int width)
+area(): int +setHeight(int height)

+area(): int

Solution

* To encapsulate what varies and
to provide a generic interface
we introduce an abstract Shape
class.

Class

»

»

" Square
* Shape

" Properties

Area
Side

" Methods

Square

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

3 UNIVERSITY OF TORON"}O

. Shape A
. Abstract Class
~ Properties
i * Areq
"""""""" ‘}'ﬁ“‘"""""""'
A ' Rectangle A
Class
* Shape
* Properties
* Area
* Height
* Width
* Methods

Rectangle

Violating the Liskov Substitution Principle

e .NET System.Array implementing the |ICollection<T> interface
* The C# compiler doesn’t even warn on such simple erroneous

program.

static void Maln(strlng[] 2s) { args= -'st:':r-::::[i’}
ICollection<string> collectlon = new [] { hellol }; // collection is actually an array!! collection = {string[1]}
collection.Add("hello2"); ection = {string[1]}

..

} : |
Exception Unhandled a x

System.NotSupportedException: ‘Collection was of a fixed size.’

= O ctrica 11116(‘1‘1[10
+?s UNIVERSITY OF TORONTO

https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1?view=netframework-4.8

Liskov Substitution Principle (LSP)

Think twice before applying the IS-A trick

* Use polymorphism with great caution

Do this member applies seamlessly to all objects that will implement this
interface?

When writing an API first take the point of view of the client of your API

e Test-Driven Development (TDD), where client code must be written for test and
design purposes before writing the code itself.

& The Edward S. Rog SD}
Bl of Electr 1&@} r Eng

IlU
%ﬁ, UNIVERSITY e TORONTO

Corresponding Design Patterns

* Strategy
* Composite
* Proxy

“omputer Engineering
SITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

| » Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Interface Segregation Principle

When more means less

Interface Segregation Principle

“Clients should not be forced to depend upon interfaces that
they don't use”

Iworker
Iworker has methods
SigniIn()

StartWork () that are different for
TeaBreak () different workers and

QilCheck() violates ISP
Lunch() od
BattervCharge () ,//‘\
ContinueWork() /o ./ Human
Signout () / o
d Z
» L

-‘i‘i{'{f e Eivu d S. Rog
Electrical & Co: 1, uter
az,”a UNIVERSITY OF 1URUN1U

Interface Segregation Principle

“Clients should not be forced to depend upon interfaces that

they don't use”
Good

“Segregate your interfaces”

Iworker
Signin() IHuman IRobot
StartWork() TeaBreak() ReCharge ()
Continue () Lunch () OilCheck()
SignOut ()
~
e Edward S. Rogers S

i Electrical & Compute
C13

'%“ UNIVERSITY OF TORONTO

Interface Segregation Principle (ISP)

* No client should be forced to depend on methods it does not use.

* The goal of ISP is similar to Single Responsibility principle : to reduce
the side effects and frequency of required changes by splitting the
software into multiple, independent parts.

?fi},? The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO

https://medium.com/@radheshyamsingh_83359/solid-principles-of-object-oriented-design-4f78d73526c6

Interface Segregation Principle (ISP)

A fat interface is not necessarily a design flaw

4 {} System
4 *0|Convertible
@ GetTypeCodel()

B! BOSkReaniie CTREks rscar) [SuppressMessage("NDepend", "ND1200:AvoidInterfacesTooBig",
@ ToChar(IFormatProvider)

© ToSByte(IFormatProvider) Justification="This interface is fat because it needs to support all
@ ToByte(IFormatProvider) primitive types"]

@ Tolnt16(IFormatProvider) A .

& ToUlnt16(IFormatProvides) public interface IConvertible {

@ Tolnt32(IFormatProvider)
@ TolUInt22(IFormatProvider)
@ Tolnt64(IFormatProvider)
@ TolInt64(IFormatProvider)
@ ToSingle(IFormatProvider)
® ToDouble(IFormatProvider) https://www.ndepend.com/docs/suppress-issues?_ga=2.63469095.983202201.1601605450-
@ ToDecimaI(IFormatPro*.'ider) 1723910178.1601605450

@ ToDateTime(lFormatProvider)

@ ToString(IFormatProvider)

@ ToType(Type.|IFormatProvider)

Edward S. Rogers Sr. Department

lectrical & Computer Engineering

9% UNIVERSITY OF TORONTO

ISP

Single responsibility
principle

Open/closed principle

” Liskov substitution principle

Interface segregation
principle

Classes that implement small | Dependency inversion

H . . l
interfaces are more focused and i
tend to have a single purpose

e Edward S. Rogers Sr. D} artment
HU

, Electrical & Cor }t r Eng
4 UNIVERSITY OF TORONTO

ISP

Single responsibility
principle

Open/closed principle

LSP

Liskov substitution principle

) S 4
) L

Interface segregation
principle

By keeping interfaces small, b D Dependency inversion
the classes that implement them = Prnclps
have a higher chance to fully
substitute the interface

Edward S. Rogers Sr. Department
lectrical & Computer Engineering

4 UNIVERSITY OF TORONi"O

Corresponding Design Patterns

* Memento
* [terator

“omputer Engineering
SITY OF TORONTO

OO Design Principles

Single responsibility
principle

Open/closed principle

Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

) L g

e Edward S. Rogers Sr. Department
Electrical & Computer Engineering

,.,,%@ UNIVERSITY OF TORON"}O

.—.H f c\g;\ OO OO @

N

>

Dependency Inversion Principle

When knowing how things work becomes a burden

Dependency Inversion Principle (DIP)

* High-level modules should not depend on low-level modules.

Both should depend on abstractions.

e Abstractions should not depend on details (concrete

implementation). Details should depend on abstractions.

?fi},? The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering
%?ﬁ UNIVERSITY OF TORONTO

Dependency Inversion Principle (DIP)

* A High level module is any module that contains the policy decisions
and business model of an application. This can be regarded as the app
identity. The higher level modules are primarily consumed by the
presentation layer within an app.

 Low level modules are modules that contains detailed

implementation that are required to execute the decisions and
business policies.

%*i‘fr,? The Edward S. Rogers Sr. Department
& | of Electrical & Computer Engineering

+®) UNIVERSITY OF TORONTO

Dependency Inversion Principle (DIP)

Listing 5: Naive Button/Lamp Code

—————————————— LD .l >oesssscsssssss

public:
7 VC@d Turnon() ;
+P0]l() +Turn0n() void TurnOff();
43Turn()fﬂj) - button.h

ass Lamp;

A Button

.

ublic: '
Button(Lamp& 1) : itsLamp(&l) {}
vold Detect () ;

rivate:
Lamp* itsLamp;

"

o

finclude “button.h*
ffinclude “lamp.h*

volid Button: :Detect ()
" bool buttonOn GetPhysicalState();
if (buttonOn)
itsLamp->TurnoOni) ;
éelge

itsLamp->TurnOff();

The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

%?[HHVERQTY’OFTORONTO

Dependency Inversion Principle (DIP)
Listing 6: Inverted Button Model

Figure 6: Inverted Button Model

Button > ButtonClient
Button Lam
Implementation P

---------- byttonClient .h-=======--

class ButtonClient

public:
virtual void TurnOn() ;
virtual void TurnOff() = 0;

I
o

----------- button.h---=-===vcecccec--

class ButtonClient;
class Button

public:

Button (ButtonClient&) ;

void Detect () ;

virtual bool GetState() = 0;
private:

ButtonClient* itsClient;

--------- button.cC---===wewecececc=-

#include button.h
#include buttonClient.h

Button: :Button (ButtonClient& bc)
itsClient (&bc)

void Button: :Detect ()

bool buttonOn = GetStatel();
if (buttonOn)
itsClient->TurnOn() ;
else
itsClient->TurnOff () ;

----------- lamp.h-====ccccccccnn-
: public ButtonClient

public:
virtual void TurnOn() ;
virtual void TurnOff () ;

--------- buttonImp.h-===========-
class ButtonImplementation
: public Button

public:
ButtonImplementaton (
ButtonClient&) ;
virtual bool GetState() ;

Corresponding Design Patterns

* Factory Method
* Prototype
* |terator

’fﬁé The Edward S. Rogers Sr. Department
‘ of Electrical & Computer Engi i

ngineering
&ﬁ%g@ UNIVERSITY OF TORONTO

OO Design Principles

B Single responsibility Building stable
principle

and flexible
Open/closed principle Systems

» Liskov substitution principle

Interface segregation
principle

Dependency inversion
principle

"iﬁré The Edward S. Rogers Sr. Department

=] of Electrical & Computer Engineering

5‘% UNIVERSITY OF TORONTO

Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/

Are SOLID principles Cargo Cult?

It looks like a plane, but will it fly?

