
ECE444: Software Engineering

Design Patterns 2 (SOLID)

Shurui Zhou



• About posting questions on Piazza
• About Milestone 3 deadline
• Group&Individual report (Monday) 10/5 11:59pm EST
• Peer review (Thursday) 10/8 11:59pm EST

• About Milestone 5 deadline 11/18 11:59 EST
• About workload – incoming survey



Learning goals

• Understand SOLID principle



UML Relationships



OO Design Principles



• Elements of Reusable 
Object-Oriented 
Software
• 23 OO patterns



Why Patterns?

• They offer solutions for specific problems
• They are easily applicable because the purpose and application are 

consistently described
• They make work more efficient
• They can be adapted to specific contexts
• They make communication between developers easier
• Goal: Understandable, reusable, testable, maintainable and flexible



OO Design Principles



Single Responsibility Principle

Benefits:
• Frequency and Effects of Changes
• Easier to Understand

Q: What is the responsibility of your 
class/component/microservice?

A class should have one, and only one, reason to change.
Just because you can, doesn’t mean you should



Single Responsibility Principle

A class should have one, and only one, reason to change.



Single Responsibility Principle



OO Design Principles



Open-Closed Principle (OCP)

• Software entities should be open for extension, but closed for modification.



Open-Closed Principle
• Implementation: 
• inheritance
• composition

• Benefits:
• extend a component’s logic without breaking backward 

compatibility
• test different component implementations (that have the 

same logic) against each other.

https://stackify.com/oop-concept-inheritance/
https://stackify.com/oop-concepts-composition/


Open-Closed Principle (Example: Client&Server)

The class is:
- not open for extension, since we always use a concrete Server instance
- not closed for modification, because if we wish to change to another 
type of server, we must change the source code.



Open-Closed Principle (Example: Client&Server)



Open-Closed Principle (Example: Order&Shipping)



Open-Closed Principle (Example: Order&Shipping)



Thoughts? Critiques on OCP

• Adding un-needed flexibility to code (to make it open for extension) 
breeds complexity and carrying cost.
• It requires imagining all sorts of use-cases that don’t exist in order to 

make it ultimately flexible. 
• Principle != you should always do this



OO Design Principles



OO Design Principles



Duck Tesk



Liskov Substitution Principle (LSP)

• The object of a derived class should be able to replace 
an object of the base class without bringing any errors 
in the system or modifying the behavior of the base 
class. 



Benefit of LSP

• Code that adheres to LSP is loosely dependent to each other and 
encourages code reusability.



Disadvantages to violating the LSP

• Code that does not adhere to the LSP is tightly coupled and creates 
unnecessary entanglements.
• E.g. when a subclass can not substitue its parent class there would 

have to be multiple conditional statements to determine the class or 
type to handle certain cases differently.



Violating the Liskov Substitution Principle
• a Square is a Rectangle. 

IS-A relationship



Violating the Liskov Substitution Principle
• a Square is a Rectangle. 



Liskov Substitution Principle (LSP)
• A LSP compliant solution
• Introduce the interface Shape to bundle common methods.



Solution

• To encapsulate what varies and 
to provide a generic interface 
we introduce an abstract Shape 
class.



Violating the Liskov Substitution Principle

• .NET System.Array implementing the ICollection<T> interface
• The C# compiler doesn’t even warn on such simple erroneous 

program.

https://docs.microsoft.com/en-us/dotnet/api/system.array?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.icollection-1?view=netframework-4.8


Liskov Substitution Principle (LSP)

• Think twice before applying the IS-A trick
• Use polymorphism with great caution
• Do this member applies seamlessly to all objects that will implement this 

interface?
• When writing an API first take the point of view of the client of your API
• Test-Driven Development (TDD), where client code must be written for test and 

design purposes before writing the code itself.



Corresponding Design Patterns

• Strategy
• Composite
• Proxy



OO Design Principles







Interface Segregation Principle (ISP)

• No client should be forced to depend on methods it does not use.
• The goal of ISP is similar to Single Responsibility principle : to reduce 

the side effects and frequency of required changes by splitting the 
software into multiple, independent parts.

https://medium.com/@radheshyamsingh_83359/solid-principles-of-object-oriented-design-4f78d73526c6


Interface Segregation Principle (ISP)

• A fat interface is not necessarily a design flaw

[SuppressMessage("NDepend", "ND1200:AvoidInterfacesTooBig", 
Justification="This interface is fat because it needs to support all 
primitive types"]
public interface IConvertible {

...

https://www.ndepend.com/docs/suppress-issues?_ga=2.63469095.983202201.1601605450-
1723910178.1601605450







Corresponding Design Patterns

• Memento
• Iterator



OO Design Principles



Dependency Inversion Principle (DIP)

• High-level modules should not depend on low-level modules. 

Both should depend on abstractions.

• Abstractions should not depend on details (concrete 

implementation). Details should depend on abstractions.



Dependency Inversion Principle (DIP)

• A High level module is any module that contains the policy decisions 
and business model of an application. This can be regarded as the app 
identity. The higher level modules are primarily consumed by the 
presentation layer within an app.
• Low level modules are modules that contains detailed 

implementation that are required to execute the decisions and 
business policies.



Dependency Inversion Principle (DIP)



Dependency Inversion Principle (DIP)



Corresponding Design Patterns

• Factory Method
• Prototype
• Iterator



OO Design Principles

Building stable 
and flexible 
systems



Cargo cult programming

https://blog.ndepend.com/are-solid-principles-cargo-cult/


